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The beta spectrum endpoint has been 
under continuous study since 1934

Fermi 1934

Mainz 2005

KATRIN 2016–(?)

MARE, ECHO 20??–
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 Project 8 201?–



B field →

T2 gas at P < 1mT

 

Microwave antennae

The Project 8 concept

• emitted by mildly relativistic 
electrons

• Coherent, narrowband

• 10-15 W per electron

• Electron energy contributes to 
velocity v, power P,  frequency ω

• Can we detect this radiation, 
measure v, P, ω, and determine E 
± 1 eV?

! = qB
�mc2

Cyclotron radiation
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many overlapping
low-energy electrons 

rare high-energy
electrons

100,000 simulated T2 decays
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Thursday, April 4, 13

83Rb → 83mKr → 83Kr + e- 

LO, Mixer and warm amplifiers
cold preamp

magnetic
bottle
trap

waveguide

K
r 

in
le

t1-Tesla 
superconducting 
magnet (signal 

around 26 GHz)
very expensive fog

DPPH target (EPR microwave 
absorption) in waveguide
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WR42 waveguide/
source tube

9.4 kG solenoid

100 G magnetic
bottle

pulse tube
cooler 30K

BPF 

 HF Receiver Stage Measurement 

24.5 GHz 
DRO 

Lorch BPF 
25-27 GHz Quinstar  

Amplifier 
30 dB 

MiniCircuits 
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20 dB 
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VNA Port 1 
24.6-28GHz 
 at -50dBm 

Spectrum Analyzer 
100-3500MHz 

MITEQ Mixer 
25-27 GHz 

RF 
LO 

IF 

NRAO 
preamp
25 dB
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PwrOscillator_3
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N=3
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HPF_Butter_1

Fpass=81.0MHz
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Coupler1_2
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NF=3dB
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RFAmp_5 ZO=50Ω
Port_4

Project8 Room Temperature Receiver

kdb1=0.011 [k141]
L=1200mm

CABLE_CLI_5

L=13.0dB
Attn_1

Pwr=14.5dBm
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PwrOscillator_2
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G=15dB
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Split2_1

R I
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ConvGain=-8dB

Mixer_2
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MultiSource_5
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HF stage

LF stage

83mKr gas
injection

DPPH electron
spin resonance target

Text

Signal digitized for 
offline analysis at 
250MHz

Questions: 
Signal gain? ~48 dB 
Effective noise temperature? ~170K   24.845 GHz = 30.2 keV electron

25.427 GHz = 17.8 keV electron
26.360 GHz = DPPH resonance
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1 fW signal should be detectable over 90-100K 
background

simulated signal
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slope = radiative energy loss

signal ends 
after scatter 

off residual gas



simulated signal
no such signal 
in data ... yet
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First runs: thermal noise, no signal



Early runs: lovely thermal noise 

PDF of spectral 
power: exponential, 
not Gaussian

Typical spectrum 
(Run1)

no significant peaks

The “bins” in a power spectrum are NOT like bins in a histogram, and do NOT show Poisson statistics.
They’re distributed like Gaussian random numbers squared.
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UW prototype updates:
More running this year!

New magnet!  Warm-bore 
NMR from UCSB

Cold preamps on new cold head

New termination scheme
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it is not an applicable strategy because a collision-dominated resolution function cannot be much

broader than the neutrino mass e↵ect sought. Systematic uncertainty in the resolution will limit

the density.

There is a simple relationship between the uncertainty in the variance of an instrumental reso-

lution contribution and the corresponding uncertainty introduced in the neutrino mass:

�m2
⌫
⇡ 2�2

res

. (13)

Each of the resolution components in Eq. 10 has an associated uncertainty that propagates into

the neutrino mass. For concreteness, we assume that the distributions are each known to 1%.

ν2 , e
V2

FIG. 1. Uncertainty obtainable as a function of volume under observation for various choices of number

density per cm3. Systematic uncertainties due to imperfect knowledge of contributions to the resolution are

included. The frequency chosen is 26.5 GHz, the field is uniform to 0.1 ppm rms, the source temperature

for molecular T2 is 30K and for atomic T it is 1K, and the background is 10�6 per second per eV. The

e�ciency factor �⌦ is taken as unity for the e↵ective volume, and the live time is 3⇥ 107 seconds.

Figure I shows calculated neutrino mass statistical and systematic sensitivities for various

choices of number density, as a function of volume. Absent knowledge of the scattering cross sec-

tion for 18-keV electrons on atomic tritium, the cross-section cited by Aseev et al. [15], 3.4⇥ 10�18

Recent sensitivity estimates

Neutrino mass limit, eV (90% CL)

Details:  B=1 Tesla, background = 1 µHz/eV,  livetime 1y, angular acceptance 1 ster, 
pressure broadening known to 1%, field broadening < 10-7 
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Details:  B=1 Tesla, background = 1 µHz/eV,  livetime 1y, angular acceptance 1 ster, 
pressure broadening known to 1%, field broadening < 10-7 

If source is too dense, limit is 
systematic error on linewidth

(approx. 0.25 eV)
accessible with 2 mCi, 1 liter

Molecular tritium final-state 
uncertainty (0.1 eV)
~20 mCi, 100 liter

Atomic T experiment  
200 mCi, 5 m3

normal hierarchy

inverted hierarchy

More statistical sensitivity by
packing more T into your 

source
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Upgrade: single-electron maser?

Relativistic
Landau levels

E
↕ ħqB/m

Parent 3T

beta decay
populates

Landau level at Ee

↕ ħqB/(m+E)

microwave beam at
ω = qB/(m+Ee) will drive 

this electron up

Electron falls back via 
stimulated emission, process

repeats

Other Landau levels
are detuned from this beam; 

low-energy electrons are ignored.
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Single electron can absorb/emit large power
from resonant probe beam ...
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... but a strong probe beam makes a wide energy window

pW
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• A microwave probe has a stable (synchrotron) 
resonance with a cyclotron electron of the right 
frequency.
• Follow up each electron detection with a low-
resolution, high-SNR “maser tag” for verification.



What’s next?
• UW prototype will run again this 

year

• First electron detection

• maybe some physics spectra

• (no tritium any time soon)

• UCSB cyclotron maser 
experiments under construction

• Preparing to propose the 1-liter, 
eV-scale experiment

• Read our Snowmass whitepaper!

• Looking at other physics (neutron 
decay, fundamental constants)
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